Phase Equilibrium of Binary System Carbon Dioxide - Methanol at High Pressure Using Artificial Neural Network

نویسندگان

  • FARIBORZ NASRI
  • AFSHIN MALEKI
چکیده

Interest in supercritical fluids extraction (SFE) is increasing throughout many scientific and industrial fields. The common solvent for use in SFE is carbon dioxide. However, pure carbon dioxide frequently fails to efficiently extract the essential oil from a sample matrix, and modifier fluids such as methanol should be used to enhance extraction yield. A more efficient use of SFE requires quantitative prediction of phase equilibrium of this binary system, carbon dioxide – methanol. The purpose of the current research is modeling carbon dioxide – methanol system using artificial neural network (ANN). Results of ANN modeling has been compared with experimental data as well as thermodynamic equations of state. The comparison shows that the ANN modeling has a higher accuracy than thermodynamic models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solubility Prediction of Drugs in Supercritical Carbon Dioxide Using Artificial Neural Network

The descriptors computed by HyperChem® software were employed to represent the solubility of 40 drug molecules in supercritical carbon dioxide using an artificial neural network with the architecture of 15-4-1. The accuracy of the proposed method was evaluated by computing average of absolute error (AE) of calculated and experimental logarithm of solubilities. The AE (±SD) of data sets was 0.4 ...

متن کامل

Solubility Prediction of Drugs in Supercritical Carbon Dioxide Using Artificial Neural Network

The descriptors computed by HyperChem® software were employed to represent the solubility of 40 drug molecules in supercritical carbon dioxide using an artificial neural network with the architecture of 15-4-1. The accuracy of the proposed method was evaluated by computing average of absolute error (AE) of calculated and experimental logarithm of solubilities. The AE (±SD) of data sets was 0.4 ...

متن کامل

Prediction of methanol loss by hydrocarbon gas phase in hydrate inhibition unit by back propagation neural networks

Gas hydrate often occurs in natural gas pipelines and process equipment at high pressure and low temperature. Methanol as a hydrate inhibitor injects to the potential hydrate systems and then recovers from the gas phase and re-injects to the system. Since methanol loss imposes an extra cost on the gas processing plants, designing a process for its reduction is necessary. In this study, an accur...

متن کامل

Adsorption of Fe (II) from Aqueous Phase by Chitosan: Application of Physical Models and Artificial Neural Network for Prediction of Breakthrough

Removal of Fe (II) from aqueous media was investigated using chitosan as the adsorbent in both batch and continuous systems. Batch experiments were carried out at initial concentration range of 10-50 mg/L and temperature range of 20–40˚C. In batch experiments, maximum adsorption capacity of 28.7 mg/g and removal efficiency of 93% were obtained. Adsorption equilibrium data were well-fitted with ...

متن کامل

Estimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network

In this study, the use of the three-layer feed forward neural network has been investigated for estimating of infinite dilute diffusion coefficient ( D12 ) of supercritical fluid (SCF), liquid and gas binary systems. Infinite dilute diffusion coefficient was spotted as a function of critical temperature, critical pressure, critical volume, normal boiling point, molecular volume in normal boilin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012